Формирование действия контроля в процессе работы над вычислительными приемами и навыками
Формирование действия контроля в процессе работы над вычислительными приемами и навыками
Страница 5

Другой вид контроля учащийся использует, когда ему приходится перестраивать способ действия или строить его заново: в этом случае он не выбирает из известных ему способов какой-либо способ, более адекватный условиям задачи, а самостоятельно, (или с помощью учителя) строит его. Здесь осуществляется рефлексивный контроль.

В.Г. Романко [34] описала основные характеристики формирования у младших школьников рефлексивного контроля при усвоении ими теоретических знаний рефлексивный контроль связан с апробированием детьми ранее освоенного общего способа предметного действия в новых условиях его использования, с поиском нового способа действия применительно к этим условиям.

В соответствии с мнением Д.Б. Эльконина [39], контроль в учебной деятельности бывает двух видов: по результату и по процессу. Контроль по результату осуществляется на основании того, выполнено задание или нет, насколько качественно оно выполнено. Контроль по результату имеет смысл только в том случае, если он возвращается к контролю по процессу, а это встречается только тогда, когда учащийся совершил ошибку. Контроль по процессу предполагает выяснение тех операций, способов, действий, с помощью которых получен результат. Г.Я. Мор [24] отмечает, что для контроля по процессу необходимо знать алгоритм действия ученика, приём работы при выполнении задания. Без такого контроля невозможно выяснить причины многих трудностей. Формирование полноценного контроля возможно только на основе контроля по процессу.

По мнению М.В. Гамезо, действие контроля есть действие сличения, соотнесение учебных действий с образцом, который задаётся извне. Он выделяет три вида контроля: по результату (итоговый контроль), пооперационный и перспективный. Пооперационный (поисковый) контроль более высокий уровень контроля, чем итоговый. Это – коррекция деятельности, слежение за ходом действия, за тем, какое действие выполняется в данный момент, что ещё предстоит делать. Одновременно идёт контроль качества: как выполняется действие, соответствуют ли действия заданным требованиям. Перспективный (планирующий) контроль ещё более совершенный вид саморегуляции. Это корректирование деятельности на несколько операций вперёд, сличение предстоящей деятельности и своих возможностей её выполнения.

По мнению П.К. Анохина, контроль предполагает как бы три звена:

1. модель, образ потребного, желаемого результата действия;

2. процесс сличения этого образа и реального действия;

3. принятие решения о продолжении и коррекции действия.

Все эти три звена и есть структуры внутреннего контроля субъекта деятельности за её реализацией. Каждое звено деятельности, каждое её действие внутренне контролируется. Именно это позволяет нам говорить, что человек является саморегулируемой, самообучающейся, самосовершенствующейся личностью.

Д.Б. Эльконин придаёт действию контроля в процессе решения учебной задачи особое значение. По его предположению, именно оно характеризует всю учебную деятельность как управляемый самим ребёнком произвольный процесс. Произвольность учебной деятельности определяется наличием нескольких не столько намерения нечто сделать и желанием учиться, сколько контролем за выполнением действий в соответствии с образцом. Д.Б. Эльконин [39] полагает, что формирование произвольности основных психических процессов в младшем школьном возрасте, становление произвольности умственных действий детей существенно определяется именно степенью произвольности учебной деятельности. Последняя уже зависит от уровня сформированности входящего в ней действия контроля.

Страницы: 1 2 3 4 5 6 7 8 9

ХРИСЕИДА , см. Хрис.

ДИФФЕРЕНЦИАЦИЯ , в биологии -1) в филогенезе - расчленение группы организмов на две или несколько в процессе эволюции; наиболее важная филогенетическая дифференциация - видообразование. 2) В онтогенезе - то же, что дифференцировка.

ГЕРОНА ФОРМУЛА , выражает площадь S треугольника через длины трех его сторон a, b и c и полупериметр P = (a + b + c)/2Названа по имени Герона Александрийского.